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Exact solutions for N steady fingers in a Hele-Shaw cell
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Exact solutions are reported forN steady fingers moving with a constant speedU in a Hele-Shaw channel in
the absence of surface tension.@S1063-651X~98!12610-7#

PACS number~s!: 47.15.Hg, 47.20.Hw, 68.10.2m
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The problem of the displacement of a more viscous fl
by a less viscous one in a Hele-Shaw cell has received
siderable attention, both theoretically and experimenta
since the pioneering work by Saffman and Taylor@1#. In
particular, the situation when surface tension effects are
glected is rather amenable to mathematical investigation
several exact solutions have been found in this case.
example, a large class of solutions for steady bubbles
Hele-Shaw cell has been reported previously by the pre
author@2#. Exact time-dependent solutions in the form of t
so-called pole dynamics have also been extensively inve
gated in the literature@3#. Of particular interest among thes
time-dependent solutions is a class of solutions@4,5# whose
asymptotic interface corresponds toN steadily moving fin-
gers. The physical relevance of multifingers solutions
been discussed recently@6# in connection with the role of
surface tension in the dynamics of fingering patterns.
though the long-time behavior of theN-finger solution has
been extensively studied@7,8#, an explicit solution for these
N steady fingers is nonetheless warranted. To present su
calculation is the chief aim of this Brief Report.

The problem ofN steady fingers moving with a consta
speedU in a Hele-Shaw channel in the absence of surf
tension is formulated as follows. LetD denote the region
inside the channel occupied by the viscous fluid andCk the
air-fluid interface corresponding to thekth finger@Fig. 1~a!#.
The fluid-velocity fieldv(x,y) is given by

v5“f, ~1!

where the velocity potentialf(x,y) is the solution to the
free-boundary problem

¹2f50 in D, ~2a!

f50, “f•n̂5Ucosu on Ck , ~2b!

“f•n̂50 at y561, ~2c!

f'Vx as x→`. ~2d!

Heren̂ is the outward unit vector normal to the interfaceCk ,
u is the angle betweenn̂ and thex axis, andV is the far-field
fluid velocity. ~Without loss of generality I shall hencefort
set V51.) Physically, the velocity potentialf is identified
~up to a negative constant of proportionality! with the fluid-
pressure field.
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It is most convenient to analyze the problem in a fram
(x8,y8) moving with fingers. If one introduces the comple
variablez5x81 iy8, the flow can then be described by th
complex potentialW(z)5f8(x8,y8)1 ic8(x8,y8), where
f8 is the velocity potential in the moving frame andc8 is the
corresponding stream function. From this point onward
shall, however, drop the prime notation with the understa
ing that I will be working solely in the frame where th
fingers are stationary. The problem given in Eq.~2! can now
be restated as follows: The functionW(z) must be analytic in
the fluid domainD and satisfy the boundary conditions

W52Ux1 ick on Ck , k51,2, . . . ,N, ~3!

Im W56~12U ! at y561, ~4!

FIG. 1. Flow geometry:~a! thez plane,~b! theW plane, and~c!
the z plane.
6858 © 1998 The American Physical Society
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where theck’s are real-valued constants and ImW indicates
the imaginary part ofW. ~For a more detailed discussion o
these boundary conditions see Ref.@2#.! We can thus view
W(z) as a conformal mapping from the fluid domainD in
the z plane to a region in theW plane that consists of a
infinite strip of width 2(U21) with N horizontal slits@Fig.
1~b!#.

Next consider the conformal mappingz5 f (z) from the
interior of the unit semicircle in the complexz plane @Fig.
1~c!# to the fluid domainD in the z plane. For conciseness
but admittedly in an abuse of notation, I shall writeW(z) for
W„f (z)…. Thus W(z) maps conformally the interior of the
unit semicircle in thez plane onto the flow domain in theW
plane. Such a mapping can be easily constructed and
finds thatW(z) is given by

Wz5
2~U21!

p

)
k51

N

~z2eigk!~z2e2 igk!

z~12z2!)
k52

N

~z2eink!~z2e2 ink!

, ~5!

where thez subscript denotes derivative with respect toz.
Here gk and nk are real-valued parameters taking values
the range 05n1,g1,n2,g2,n3,•••,gN,nN115p,
where for convenience I have also introduced the parame
n150 and nN115p. As indicated in Fig. 1, the pointsz
5exp(igk) andz5exp(ink) are mapped, respectively, on th
tips and end points of the fingers.

The mapping functionf (z) can now be obtained by firs
noting that on uzu51 we have x5 1

2 (z1 z̄)5 1
2 @ f (z)

1 f (1/z)#. Inserting this identity into the condition~3! yields
the equality

f ~z!1 f ~1/z!52
2

U
W~z!, ~6!

which is valid onuzu51 and, by analytic continuation, insid
the unit semicircle as well. Using the fact thatW(1/z)
5W(z), one can then easily verify that the solution to E
~6! is given by

f ~z!52
1

UF 2

p
ln z1W~z!G . ~7!

Integrating Eq.~5! to yield W(z) and inserting this into Eq
~7!, one finally obtains

f ~z!52
2

p
ln z1

2

p
~12U21!Fa1ln~12z!1aN11ln~11z!

1 (
k52

N

akln~z2eink!~z2e2 ink!G . ~8!

Here the coefficientsak , in terms of the original parameter
gk andnk , are given by
ne

rs

.

ak5

)
l 51

N

~cosnk2cosg l !

)
l 52
lÞk

N

~cosnk2cosn l !

~9!

for k51, . . . ,N11. The interface shape for each of theN
fingers is then obtained from the parametric equations

xk~u!1 iyk~u!5 f ~eiu!, nk,u,nk11 , k51, . . . ,N.
~10!

Equations ~8!–~10! thus give a 2N-parameter~corre-
sponding toN parametersgk , N21 parametersnk , and the
speedU) family of solutions forN steady fingers in a Hele
Shaw channel in the absence of surface tension. Note tha
a given set of parameters$gk , nk% solutions for arbitrary
velocity U.1 are possible.~This is the characteristic degen
eracy of Hele-Shaw flows without surface tension@1#.! Here,
however, we need to concern ourselves only with the so
tions for U52. Solutions for any valueU.1 can be ob-
tained from a mere rescaling of theU52 solutions, as shown
in Ref. @2#. More precisely, if„x̂k(u),ŷk(u)… denotes a par-
ticular solution with U52, then there will exist a corre
sponding solution for an arbitraryU.1 whose parametric
equations are@2#

xk~u!5~11m!x̂k~u!, ~11!

yk~u!5~12m!ŷk~u!, ~12!

wherem5122U21.
SettingU52 in Eq. ~8! and evaluatingf (eiu), one ob-

tains after some simplification that the interface correspo
ing to thekth finger has the equation

xk5
a1

p
ln sin

p

2
~yk

02y!1
aN11

p
ln cos

p

2
~yk

02y!

1
1

p (
l 52

N

al ln@cosp~yk
02y!2cosn l #, ~13!

where

yk
0512

a1

2
2(

l 52

k

ual u, ~14!

and the variabley ~over thekth finger! is restricted to the
interval

nk

p
,yk

02y,
nk11

p
, k51, . . . ,N. ~15!

In Eq. ~13! an additive constant has been removed by app
priately redefining the origin of thex axis.

A geometrical interpretation of the solution parameters
now straightforward. From Eq.~15! it immediately follows
that the relative widthlk of thekth finger with respect to the
channel width is given by
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lk5
1

2p
~nk112nk!, k51, . . . ,N. ~16!

From Eq.~8! one also readily sees that the coefficientsak fix
the separation~‘‘gaps’’ ! between adjacent fingers. More sp
cifically, the relative gapdk ~with respect to the channe
width! between the (k21)th andkth finger is simply

dk5
uaku
2

, k52, . . . ,N. ~17!

Similarly, d15 1
4 a1 is the relative separation between t

first finger~from top down! and the upper sidewall, wherea
dN115 1

4 aN11 is the corresponding gap between theNth fin-
ger and the lower sidewall. Let us now denote byL
5(k51

N lk the total relative width of all the fingers combine
and byD5(k51

N dk the total portion occupied by the fluid~on
the far left side of the channel!, so thatL1D51. For a
solution withU52 we must haveL5D51/2 which in turn
implies that the parametersak must satisfy the additiona
condition

a11aN1112(
k52

N

uaku52. ~18!

Thus all possible solutions can be conveniently co
structed by prescribing the widths of theN fingers ~which
determine the parametersnk) together with the gaps betwee
adjacent fingers~which fix the coefficientsak). Shown in
Fig. 2 is a solution forN53 with l150.24, l250.11, and
l350.15.

Finally, I note that the solution for an asymmetrical fing
originally obtained by Taylor and Saffman@9# can be recov-
ered from our generic solution~13! by simply settingN
51. This yields
. A

ng
-

r

x5
a1

p
ln cos

p

2 S a2

2
2yD1

a2

p
ln sin

p

2 S a2

2
2yD , ~19!

where the parametersa1 and a2 must satisfy the condition
a11a252. Introducing the asymmetry parametery05 1

4 (a2
2a1), Eq. ~19! can then be rewritten as

x5
1

p
ln cosp~y2y0!1

2y0

p
ln tanFp41

p

2
~y2y0!G ,

~20!

where an additive constant has been removed so as to
form with the original choice of coordinates by Taylor an
Saffman @9#. Equation ~20! thus reproduces the origina
Taylor-Saffman finger@see Eq.~21! in Ref. @9##.

This work was supported in part by FINEP and CNP
~Brazil!.

FIG. 2. Solution forN53 with n251.5, n352.2, a150.3, a2

50.2, anda350.4.
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