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The problem of the displacement of a more viscous fluid It is most convenient to analyze the problem in a frame
by a less viscous one in a Hele-Shaw cell has received corfx’,y’) moving with fingers. If one introduces the complex
siderable attention, both theoretically and experimentallyvariablez=x’+iy’, the flow can then be described by the
since the pioneering work by Saffman and Tayldl. In  complex potentialW(z)=¢'(x",y')+i¢'(X’,y’), where
particular, the situation when surface tension effects are nep’ is the velocity potential in the moving frame ard is the
glected is rather amenable to mathematical investigation ancorresponding stream function. From this point onward, |
several exact solutions have been found in this case. Fahall, however, drop the prime notation with the understand-
example, a large class of solutions for steady bubbles in g that | will be working solely in the frame where the
Hele-Shaw cell has been reported previously by the preseffingers are stationary. The problem given in E2).can now
author[2]. Exact time-dependent solutions in the form of thebe restated as follows: The functid(z) must be analytic in
so-called pole dynamics have also been extensively investihe fluid domainD and satisfy the boundary conditions
gated in the literaturg3]. Of particular interest among these
time-dependent solutions is a class of solutiph®] whose W=—Ux+iy on G, k=1,2,...N, 3
asymptotic interface corresponds tbsteadily moving fin-
gers. The physical relevance of multifingers solutions has 1 _
been discussed recentlg] in connection with the role of ImW==(1-U) aty==1, @
surface tension in the dynamics of fingering patterns. Al- y
though the long-time behavior of tHé-finger solution has C 1 B
been extensively studidd,8], an explicit solution for these D
N steady fingers is nonetheless warranted. To present such a ) E

F
G

calculation is the chief aim of this Brief Report.

The problem ofN steady fingers moving with a constant
speedU in a Hele-Shaw channel in the absence of surface
tension is formulated as follows. L&P denote the region
inside the channel occupied by the viscous fluid &pdhe A - B
air-fluid interface corresponding to ttk¢h finger[Fig. 1(a)].

The fluid-velocity fieldv(x,y) is given by y

(a)

v=Vg¢, .Y

where the velocity potentiad(x,y) is the solution to the

free-boundary problem ®

o|lmi®l—
<

V2¢4=0 in D, (23

$=0, V¢-n=Ucos¥ on C, (2b)

Im ¢

Vé-n=0 aty==*1, (20)

d~VX as x— o, (2d)
- (©)
Heren is the outward unit vector normal to the interfage

6 is the angle betweem and thex axis, andV is the far-field |
fluid velocity. (Without loss of generality | shall henceforth
setV=1.) Physically, the velocity potentiab is identified

(up to a negative constant of proportionalityith the fluid- FIG. 1. Flow geometry(a) the z plane,(b) the W plane, andc)
pressure field. the ¢ plane.
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where they,’'s are real-valued constants and Whindicates

the imaginary part oW. (For a more detailed discussion of

these boundary conditions see Rf].) We can thus view
W(z) as a conformal mapping from the fluid domaihin
the z plane to a region in th&V plane that consists of an
infinite strip of width 2(U — 1) with N horizontal slits[Fig.
1(b)].

Next consider the conformal mappires f({) from the
interior of the unit semicircle in the complek plane[Fig.
1(c)] to the fluid domainD in the z plane. For conciseness,
but admittedly in an abuse of notation, | shall wi& ) for
W(f(Z)). ThusW(¢) maps conformally the interior of the
unit semicircle in thel plane onto the flow domain in thé&/

plane. Such a mapping can be easily constructed and one

finds thatW({) is given by

N
au-1) A EmEEe

i p N _ o
g(l—z:2>kljz ({—e")({—e ™

©)

where the{ subscript denotes derivative with respect(to
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(cosy—cosy))

©

(cosy—cosy))

MZIZ ==

for k=1,...N+1. The interface shape for each of the
fingers is then obtained from the parametric equations

k=1,..

X (0) +iy(0)=f(e'), n<O<viiq,

N.
(10)

Equations (8)—(10) thus give a MA-parameter(corre-
sponding toN parametersgy,, N—1 parameters,, and the
speedU) family of solutions forN steady fingers in a Hele-
Shaw channel in the absence of surface tension. Note that for
a given set of parametefsy,, v} solutions for arbitrary
velocity U>1 are possible(This is the characteristic degen-
eracy of Hele-Shaw flows without surface tensjah) Here,
however, we need to concern ourselves only with the solu-
tions for U=2. Solutions for any valuéJ>1 can be ob-
tained from a mere rescaling of the=2 solutions, as shown

in Ref. [2]. More precisely, if(x.(6),y«(6)) denotes a par-

Here v, and », are real-valued parameters taking values inticular solution withU=2, then there will exist a corre-

the range G v <y <<y, <wvz<-- <yN<VNi1=T,

where for convenience | have also introduced the paramete

v1=0 and vy, =. As indicated in Fig. 1, the point§

=expiy) and {=exp(y,) are mapped, respectively, on the

tips and end points of the fingers.

The mapping functiorf({) can now be obtgned by first
noting that on |{|=1 we have x=3(z+2)=3[f(2)
+f(1/¢)]. Inserting this identity into the conditiof3) yields
the equality

2
f(§)+ (0=~ SWD), ®)

which is valid on|Z|=1 and, by analytic continuation, inside
the unit semicircle as well. Using the fact th&#¥(1/¢)

=W({), one can then easily verify that the solution to Eqg.

(6) is given by

1|2

Integrating Eq«(5) to yield W({) and inserting this into Eq.
(7), one finally obtains

2 2
f(O)=— ;ln (+ ;(1—U*1) an(1—9)+ay 1In(1+7)

N
+k22 ak|n(§—ei”k)(§—e_“’k)} 8

Here the coefficients,, in terms of the original parameters
v and vy, are given by

sponding solution for an arbitraryy >1 whose parametric
gguations ar¢?]

X(0)=(1+ )X (0), (12)

Yi(0)= (1= )Yl 6), (12
whereu=1-2U"1, .

SettingU=2 in Eq. (8) and evaluatingf(e'’), one ob-
tains after some simplification that the interface correspond-
ing to thekth finger has the equation

aj; . m an+1 w
X=—Insinz (y—y) + —In cos5 (y—y)

N

+ % 22 ayIn[cosm(y?—y)—cosy], (13

where

1———2 al,

(14

and the variabley (over thekth fingep is restricted to the
interval

Vk+1

14" 0
?<yk—y< k=1,...N. (15

a
In Eqg. (13) an additive constant has been removed by appro-
priately redefining the origin of the axis.

A geometrical interpretation of the solution parameters is
now straightforward. From Eq15) it immediately follows
that the relative width\, of thekth finger with respect to the
channel width is given by
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1

2

)\k: (Vk+l_yk)' k 1,N (16)

From Eq.(8) one also readily sees that the coefficiemtdix
the separatioff‘gaps”) between adjacent fingers. More spe-
cifically, the relative gapsd, (with respect to the channel
width) between the K— 1)th andkth finger is simply

s EN k=2
k=5 =2,...N. (17)

Similarly, ;=% a, is the relative separation between the
first finger (from top down and the upper sidewall, whereas
Sn+1=3ay.1 is the corresponding gap between i fin-
ger and the lower sidewall. Let us now denote Wy
=3\ the total relative width of all the fingers combined
and byA = E,’z':lék the total portion occupied by the fluidn
the far left side of the channelso thatA+A=1. For a
solution withU =2 we must have\ = A =1/2 which in turn
implies that the parameteis, must satisfy the additional
condition

N

al+aN+1+2k22 |ak|:2 (18)

Thus all possible solutions can be conveniently con-

structed by prescribing the widths of tin fingers (which
determine the parameterg) together with the gaps between
adjacent fingergwhich fix the coefficientsa,). Shown in
Fig. 2 is a solution foN=23 with A;=0.24,\,=0.11, and
A3=0.15.

Finally, | note that the solution for an asymmetrical finger

originally obtained by Taylor and Saffma8] can be recov-
ered from our generic solutiofl3) by simply settingN
=1. This yields
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FIG. 2. Solution forN=3 with v,=1.5,v3=2.2,a,=0.3,a,
=0.2, andaz=0.4.

ay a

7—)’

a

ar
In cos- +

X= oS, Tsingl

Y), (19

LT ap
Insing| ——

where the parameteis; and a, must satisfy the condition
a;+a,=2. Introducing the asymmetry parametgr= 3 (a,

—a,), Eq. (19 can then be rewritten as

_1| 2y°l T T
x—;ncos;r(y—yo)+?nta Z+ E(y_yO) ,
(20)

where an additive constant has been removed so as to con-
form with the original choice of coordinates by Taylor and
Saffman [9]. Equation (20) thus reproduces the original
Taylor-Saffman fingefsee Eq.(21) in Ref.[9]].
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