Exact solutions for N steady fingers in a Hele-Shaw cell

Giovani L. Vasconcelos

Laboratório de Física Teórica e Computacional and Departamento de Física, Universidade Federal de Pernambuco,

50670-901 Recife, Brazil

(Received 15 May 1998)

Exact solutions are reported for N steady fingers moving with a constant speed U in a Hele-Shaw channel in the absence of surface tension. [S1063-651X(98)12610-7]

PACS number(s): 47.15.Hg, 47.20.Hw, 68.10.-m

The problem of the displacement of a more viscous fluid by a less viscous one in a Hele-Shaw cell has received considerable attention, both theoretically and experimentally, since the pioneering work by Saffman and Taylor [1]. In particular, the situation when surface tension effects are neglected is rather amenable to mathematical investigation and several exact solutions have been found in this case. For example, a large class of solutions for steady bubbles in a Hele-Shaw cell has been reported previously by the present author [2]. Exact time-dependent solutions in the form of the so-called pole dynamics have also been extensively investigated in the literature [3]. Of particular interest among these time-dependent solutions is a class of solutions [4,5] whose asymptotic interface corresponds to N steadily moving fingers. The physical relevance of multifingers solutions has been discussed recently [6] in connection with the role of surface tension in the dynamics of fingering patterns. Although the long-time behavior of the N-finger solution has been extensively studied [7,8], an explicit solution for these N steady fingers is nonetheless warranted. To present such a calculation is the chief aim of this Brief Report.

The problem of *N* steady fingers moving with a constant speed *U* in a Hele-Shaw channel in the absence of surface tension is formulated as follows. Let \mathcal{D} denote the region inside the channel occupied by the viscous fluid and C_k the air-fluid interface corresponding to the *k*th finger [Fig. 1(a)]. The fluid-velocity field $\mathbf{v}(x, y)$ is given by

$$\mathbf{v} = \boldsymbol{\nabla} \boldsymbol{\phi},\tag{1}$$

where the velocity potential $\phi(x,y)$ is the solution to the free-boundary problem

$$\nabla^2 \phi = 0 \quad \text{in } \mathcal{D}, \tag{2a}$$

$$\phi = 0, \quad \nabla \phi \cdot \hat{\mathbf{n}} = U \cos \theta \text{ on } \mathcal{C}_k, \quad (2b)$$

$$\nabla \phi \cdot \hat{\mathbf{n}} = 0 \quad \text{at} \quad y = \pm 1,$$
 (2c)

$$\phi \approx Vx \text{ as } x \to \infty.$$
 (2d)

Here $\hat{\mathbf{n}}$ is the outward unit vector normal to the interface C_k , θ is the angle between $\hat{\mathbf{n}}$ and the *x* axis, and *V* is the far-field fluid velocity. (Without loss of generality I shall henceforth set V=1.) Physically, the velocity potential ϕ is identified (up to a negative constant of proportionality) with the fluid-pressure field.

It is most convenient to analyze the problem in a frame (x',y') moving with fingers. If one introduces the complex variable z=x'+iy', the flow can then be described by the complex potential $W(z) = \phi'(x',y') + i\psi'(x',y')$, where ϕ' is the velocity potential in the moving frame and ψ' is the corresponding stream function. From this point onward, I shall, however, drop the prime notation with the understanding that I will be working solely in the frame where the fingers are stationary. The problem given in Eq. (2) can now be restated as follows: The function W(z) must be analytic in the fluid domain \mathcal{D} and satisfy the boundary conditions

$$W = -Ux + i\psi_k \quad \text{on} \quad \mathcal{C}_k, \quad k = 1, 2, \dots, N, \tag{3}$$

Im
$$W = \pm (1 - U)$$
 at $y = \pm 1$, (4)

FIG. 1. Flow geometry: (a) the *z* plane, (b) the *W* plane, and (c) the ζ plane.

```
6858
```

where the ψ_k 's are real-valued constants and Im W indicates the imaginary part of W. (For a more detailed discussion of these boundary conditions see Ref. [2].) We can thus view W(z) as a conformal mapping from the fluid domain \mathcal{D} in the z plane to a region in the W plane that consists of an infinite strip of width 2(U-1) with N horizontal slits [Fig. 1(b)].

Next consider the conformal mapping $z=f(\zeta)$ from the interior of the unit semicircle in the complex ζ plane [Fig. 1(c)] to the fluid domain \mathcal{D} in the *z* plane. For conciseness, but admittedly in an abuse of notation, I shall write $W(\zeta)$ for $W(f(\zeta))$. Thus $W(\zeta)$ maps conformally the interior of the unit semicircle in the ζ plane onto the flow domain in the *W* plane. Such a mapping can be easily constructed and one finds that $W(\zeta)$ is given by

$$W_{\zeta} = \frac{2(U-1)}{\pi} \frac{\prod_{k=1}^{N} (\zeta - e^{i\gamma_{k}})(\zeta - e^{-i\gamma_{k}})}{\zeta(1 - \zeta^{2})\prod_{k=2}^{N} (\zeta - e^{i\nu_{k}})(\zeta - e^{-i\nu_{k}})}, \quad (5)$$

where the ζ subscript denotes derivative with respect to ζ . Here γ_k and ν_k are real-valued parameters taking values in the range $0 = \nu_1 < \gamma_1 < \nu_2 < \gamma_2 < \nu_3 < \cdots < \gamma_N < \nu_{N+1} = \pi$, where for convenience I have also introduced the parameters $\nu_1 = 0$ and $\nu_{N+1} = \pi$. As indicated in Fig. 1, the points ζ $= \exp(i\gamma_k)$ and $\zeta = \exp(i\nu_k)$ are mapped, respectively, on the tips and end points of the fingers.

The mapping function $f(\zeta)$ can now be obtained by first noting that on $|\zeta| = 1$ we have $x = \frac{1}{2}(z + \overline{z}) = \frac{1}{2}[f(\zeta) + f(1/\zeta)]$. Inserting this identity into the condition (3) yields the equality

$$f(\zeta) + f(1/\zeta) = -\frac{2}{U}W(\zeta),$$
 (6)

which is valid on $|\zeta| = 1$ and, by analytic continuation, inside the unit semicircle as well. Using the fact that $W(1/\zeta) = W(\zeta)$, one can then easily verify that the solution to Eq. (6) is given by

$$f(\zeta) = -\frac{1}{U} \left[\frac{2}{\pi} \ln \zeta + W(\zeta) \right]. \tag{7}$$

Integrating Eq. (5) to yield $W(\zeta)$ and inserting this into Eq. (7), one finally obtains

$$f(\zeta) = -\frac{2}{\pi} \ln \zeta + \frac{2}{\pi} (1 - U^{-1}) \bigg[a_1 \ln(1 - \zeta) + a_{N+1} \ln(1 + \zeta) + \sum_{k=2}^{N} a_k \ln(\zeta - e^{i\nu_k}) (\zeta - e^{-i\nu_k}) \bigg].$$
(8)

Here the coefficients a_k , in terms of the original parameters γ_k and ν_k , are given by

$$\prod_{l=1}^{N} (\cos \nu_k - \cos \gamma_l)$$

$$a_k = \frac{\prod_{l=1}^{l=1}}{\prod_{\substack{l=2\\l\neq k}} (\cos \nu_k - \cos \nu_l)}$$
(9)

for k = 1, ..., N+1. The interface shape for each of the N fingers is then obtained from the parametric equations

$$x_k(\theta) + iy_k(\theta) = f(e^{i\theta}), \quad \nu_k < \theta < \nu_{k+1}, \quad k = 1, \dots, N.$$
(10)

Equations (8)–(10) thus give a 2*N*-parameter (corresponding to *N* parameters γ_k , *N*–1 parameters ν_k , and the speed *U*) family of solutions for *N* steady fingers in a Hele-Shaw channel in the absence of surface tension. Note that for a given set of parameters { γ_k , ν_k } solutions for arbitrary velocity *U*>1 are possible. (This is the characteristic degeneracy of Hele-Shaw flows without surface tension [1].) Here, however, we need to concern ourselves only with the solutions for *U*=2. Solutions for any value *U*>1 can be obtained from a mere rescaling of the *U*=2 solutions, as shown in Ref. [2]. More precisely, if $(\hat{x}_k(\theta), \hat{y}_k(\theta))$ denotes a particular solution with *U*=2, then there will exist a corresponding solution for an arbitrary *U*>1 whose parametric equations are [2]

$$x_k(\theta) = (1+\mu)\hat{x}_k(\theta), \qquad (11)$$

$$y_k(\theta) = (1 - \mu)\hat{y}_k(\theta), \qquad (12)$$

where $\mu = 1 - 2U^{-1}$.

Setting U=2 in Eq. (8) and evaluating $f(e^{i\theta})$, one obtains after some simplification that the interface corresponding to the *k*th finger has the equation

$$x_{k} = \frac{a_{1}}{\pi} \ln \sin \frac{\pi}{2} (y_{k}^{0} - y) + \frac{a_{N+1}}{\pi} \ln \cos \frac{\pi}{2} (y_{k}^{0} - y) + \frac{1}{\pi} \sum_{l=2}^{N} a_{l} \ln [\cos \pi (y_{k}^{0} - y) - \cos \nu_{l}], \quad (13)$$

where

$$y_k^0 = 1 - \frac{a_1}{2} - \sum_{l=2}^k |a_l|, \qquad (14)$$

and the variable y (over the *k*th finger) is restricted to the interval

$$\frac{\nu_k}{\pi} < y_k^0 - y < \frac{\nu_{k+1}}{\pi}, \quad k = 1, \dots, N.$$
 (15)

In Eq. (13) an additive constant has been removed by appropriately redefining the origin of the *x* axis.

A geometrical interpretation of the solution parameters is now straightforward. From Eq. (15) it immediately follows that the relative width λ_k of the *k*th finger with respect to the channel width is given by

$$\lambda_k = \frac{1}{2\pi} (\nu_{k+1} - \nu_k), \quad k = 1, \dots, N.$$
 (16)

From Eq. (8) one also readily sees that the coefficients a_k fix the separation ("gaps") between adjacent fingers. More specifically, the relative gap δ_k (with respect to the channel width) between the (k-1)th and *k*th finger is simply

$$\delta_k = \frac{|a_k|}{2}, \quad k = 2, \dots, N. \tag{17}$$

Similarly, $\delta_1 = \frac{1}{4} a_1$ is the relative separation between the first finger (from top down) and the upper sidewall, whereas $\delta_{N+1} = \frac{1}{4} a_{N+1}$ is the corresponding gap between the *N*th finger and the lower sidewall. Let us now denote by $\Lambda = \sum_{k=1}^{N} \lambda_k$ the total relative width of all the fingers combined and by $\Delta = \sum_{k=1}^{N} \delta_k$ the total portion occupied by the fluid (on the far left side of the channel), so that $\Lambda + \Delta = 1$. For a solution with U=2 we must have $\Lambda = \Delta = 1/2$ which in turn implies that the parameters a_k must satisfy the additional condition

$$a_1 + a_{N+1} + 2\sum_{k=2}^{N} |a_k| = 2.$$
 (18)

Thus all possible solutions can be conveniently constructed by prescribing the widths of the *N* fingers (which determine the parameters ν_k) together with the gaps between adjacent fingers (which fix the coefficients a_k). Shown in Fig. 2 is a solution for N=3 with $\lambda_1=0.24$, $\lambda_2=0.11$, and $\lambda_3=0.15$.

Finally, I note that the solution for an asymmetrical finger originally obtained by Taylor and Saffman [9] can be recovered from our generic solution (13) by simply setting N = 1. This yields

FIG. 2. Solution for N=3 with $\nu_2=1.5$, $\nu_3=2.2$, $a_1=0.3$, $a_2=0.2$, and $a_3=0.4$.

$$x = \frac{a_1}{\pi} \ln \cos \frac{\pi}{2} \left(\frac{a_2}{2} - y \right) + \frac{a_2}{\pi} \ln \sin \frac{\pi}{2} \left(\frac{a_2}{2} - y \right), \quad (19)$$

where the parameters a_1 and a_2 must satisfy the condition $a_1 + a_2 = 2$. Introducing the asymmetry parameter $y_0 = \frac{1}{4} (a_2 - a_1)$, Eq. (19) can then be rewritten as

$$x = \frac{1}{\pi} \ln \cos \pi (y - y_0) + \frac{2y_0}{\pi} \ln \tan \left[\frac{\pi}{4} + \frac{\pi}{2} (y - y_0) \right],$$
(20)

where an additive constant has been removed so as to conform with the original choice of coordinates by Taylor and Saffman [9]. Equation (20) thus reproduces the original Taylor-Saffman finger [see Eq. (21) in Ref. [9]].

This work was supported in part by FINEP and CNPq (Brazil).

- [1] P. G. Saffman and G. I. Taylor, Proc. R. Soc. London, Ser. A 245, 312 (1958).
- [2] G. L. Vasconcelos, Phys. Rev. E 50, R3306 (1994).
- [3] For reviews, see, e.g., D. Bensimon, L. P. Kadanoff, S. Liang,
 B. I. Shraiman, and C. Tang, Rev. Mod. Phys. 58, 977 (1986);
 S. D. Howison, Eur. J. Appl. Math. 3, 209 (1992).
- [4] S. D. Howison, J. Fluid Mech. 167, 439 (1986).
- [5] M. B. Mineev-Weinstein and S. P. Dawson, Phys. Rev. E 50, R24 (1994).
- [6] F. X. Magdaleno and J. Casademunt, Phys. Rev. E 57, 3707 (1998).
- [7] S. P. Dawson and M. B. Mineev-Weinstein, Physica D 73, 373 (1994).
- [8] G. R. Baker, M. Siegel, and S. Tanveer, J. Comput. Phys. 120, 348 (1995).
- [9] G. I. Taylor and P. G. Saffman, Q. J. Mech. Appl. Math. 12, 265 (1959).